

GERMACRANOLIDES AND OTHER CONSTITUENTS FROM *AGERATINA* SPECIES

G. TAMAYO-CASTILLO, J. JAKUPOVIC, F. BOHLMANN, A. ROJAS,* V. CASTRO* and R. M. KING †

Institute of Organic Chemistry, Technical University of Berlin, D-1000 Berlin 12, F. R. G.; *Universidad de Costa Rica, Escuela de Química, San José, Costa Rica; †Smithsonian Institution, Dept. of Botany, Washington, D. C. 20560, U.S.A.

(Received 14 December 1987)

Key Word Index—*Ageratina anisochroma*; *A. ligustrina*; Compositae; sesquiterpene lactones; germacranolides; thymol derivatives; 6-hydroxypiperitol glucoside; 15-cinnamoyloxyoplopanone, benzyl benzoates; geranyl nerol derivatives.

Abstract—The aerial parts of *Ageratina anisochroma* gave several thymol derivatives including five new ones, a hydroxypiperitol glucoside, some substituted benzyl benzoates and several germacranolides related to provincialin. From *A. ligustrina* similar germacranolides, an oplopanone derivative and a further geranyl nerol derivatives were isolated. The structures were elucidated by high field NMR techniques.

INTRODUCTION

The large genus *Ageratina* (tribe Eupatorieae) is placed in the subtribe Oxylobinae [1]. Several species have been studied chemically. In addition to thymol derivatives prenylated *p*-hydroxyacetophenone derivatives are widespread while sesquiterpene lactones are rare [2-5]. We have studied *A. anisochroma* (Klatt.) K. et R., subgenus Klattiella [1] and *A. ligustrina* (DC) K. et R. placed in the subgenus Neogreenella [1], where sesquiterpene lactones have been reported [2-6]. The results are discussed in this paper.

RESULTS AND DISCUSSION

The aerial parts of *A. anisochroma* afforded, in addition to widespread compounds (Experimental), the thymol derivatives **1a** [7], **1b**, **1c**, **2a**, **2b** [8], **2c** [9], **2d** [9], **2e**, **2f** [2], **3a** and **3b** [9], the hydroxypiperitol-glucopyranoside **4**, the benzyl benzoates **5a** [10], **5b** [2] and **5c**, the germacranolides **6a** [6] and **6c** [11] as well as the closely related lactones **6b** and **6d**.

The structure of **1b** could be deduced easily from its ¹H NMR spectrum (Table 1) which showed the typical signals of a cinnamate and of thymol, only one methyl doublet being replaced by a pair of double doublets. The ¹H NMR spectrum of **1c** (Table 1) showed that this cinnamate was the Δ^8 derivative of **1b**, the second methyl signal being replaced by a pair of broadened singlets at δ 5.53 and 5.32.

The spectral data of **2a** (Table 1) showed that again a cinnamate was present. Comparison of the chemical shifts of H-10 with those of **2b** indicated that **2a** was a 10-cinnamoyloxy derivative. The ¹H NMR spectrum of **2e** (Table 1) was very similar to that of **2a**. An additional methoxy signal indicated that this cinnamate was the 6-methoxy derivative of **2a**. The structure of cinnamate **3a** followed from comparison of the ¹H NMR spectrum with that of **3b**, the corresponding 6-hydroxy derivative.

The ¹H NMR spectrum of compound **4** (Experimental) showed that a glycoside was present. Most signals could be assigned by spin decoupling and the observed NOE's indicated that a glucoside of an allylic alcohol was present as followed from the clear effect between H-1', H-2 and H-3. After acetylation, all the signals in the resultant penta acetate could be assigned by spin decoupling. The sequences showed that we were dealing with the penta acetate of 6-hydroxypiperitol- β -glucopyranoside. The observed couplings of H-6 required an axial oxygen function.

The structure of **5c** could be deduced easily from the spectral data (Experimental). This benzyl ester seems to be new.

The ¹H NMR spectrum of **6b** (Table 2) was similar to that of the acetate **6a**. However, the chemical shift of H-3 indicated a free hydroxy group while the C-25 hydroxy group was acetylated as followed from the observed downfield shift of H-25. Furthermore, the hydroxy group in the ester side chain was shifted from C-24 to C-19 as could be deduced from the differences in the spectra of **6a** and **6b**. The ¹H NMR spectrum of **6d** (Table 2) clearly showed that the 4E-isomer of the lactone **6c** was present.

The extract of the aerial parts of *Ageratina ligustrina* afforded, in addition to widespread compounds (Experimental), the guianolide 8 β -hydroxykaunolide [12], the germacranolides **7a** [13], **7b** [14], **7c** [11], **7d** [11], **7e** [6] and **7f** [15], the oplopanone derivative **8** and the geranyl nerol derivative **9**. The structure of **8** followed from the molecular formula ($C_{24}H_{32}O_4$) and from its ¹H NMR spectrum (Experimental) which was very similar to that of oplopanone, apart from the typical cinnamate signals and the replacement of the methyl ketone singlet by a pair of doublets at δ 4.91 and 4.81.

The ¹H NMR spectrum of **9** (Table 3) was similar to that of the isomeric 19-acetoxy-20-hydroxygeranyl nerol isolated from *Ageratina tristis* [6]. However, the chemical shifts of H-2 differed characteristically being more upfield in the case of acetate **9**. Furthermore, on irradiation of H-

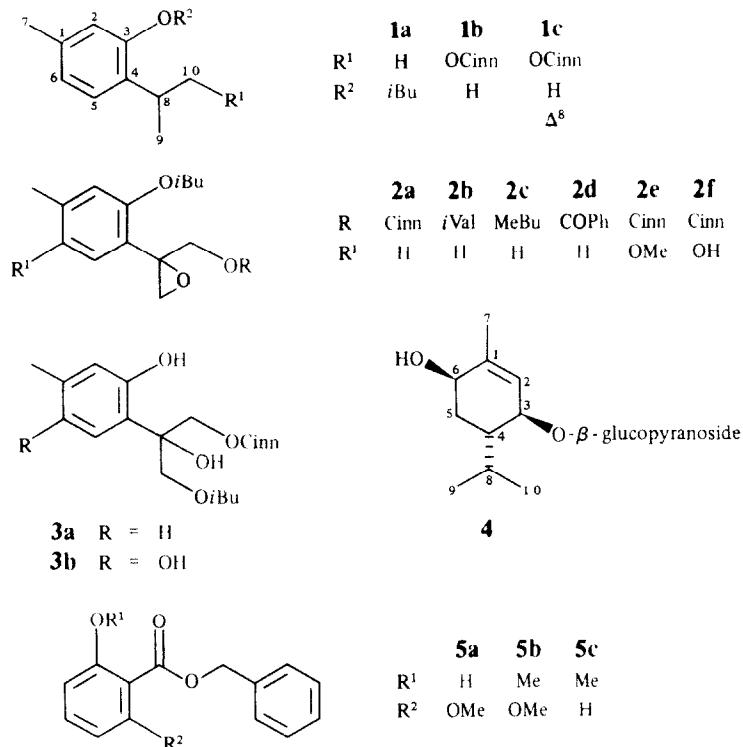


Table 1. ^1H NMR spectral data of compounds **1b**, **1c**, **2a**, **2e** and **3a** (400 MHz, CDCl_3 , δ -values)

H	1b	1c	2a	2e*	3a
2	6.71 <i>br s</i>	6.80 <i>br s</i>	6.90 <i>br s</i>	6.85 <i>br s</i>	6.64 <i>br s</i>
5	6.90 <i>d</i>	7.03 <i>d</i>	7.41 <i>d</i>	6.96 <i>s</i>	6.86 <i>d</i>
6	6.76 <i>br d</i>	6.73 <i>br d</i>	7.08 <i>br d</i>	—	6.59 <i>br d</i>
7	2.30 <i>s</i>	2.35 <i>s</i>	2.36 <i>s</i>	2.21 <i>s</i>	2.28 <i>s</i>
8	3.44 <i>m</i>	—	—	—	—
9	1.41 <i>d</i>	$\begin{cases} 5.53 \text{ } \textit{br s} \\ 5.32 \text{ } \textit{br s} \end{cases}$	$\begin{cases} 3.10 \text{ } \textit{d} \\ 2.85 \text{ } \textit{d} \end{cases}$	$\begin{cases} 3.11 \text{ } \textit{d} \\ 2.87 \text{ } \textit{d} \end{cases}$	4.59 <i>s</i>
10	$\begin{cases} 4.42 \text{ } \textit{dd} \\ 4.06 \text{ } \textit{dd} \end{cases}$	4.90 <i>br s</i>	$\begin{cases} 4.63 \text{ } \textit{d} \\ 4.40 \text{ } \textit{d} \end{cases}$	$\begin{cases} 4.67 \text{ } \textit{d} \\ 4.40 \text{ } \textit{d} \end{cases}$	$\begin{cases} 4.53 \text{ } \textit{d} \\ 4.49 \text{ } \textit{d} \end{cases}$
OC OR		7.72 <i>d</i>	7.78 <i>d</i>	2.88 <i>qq</i>	2.57 <i>qq</i>
		6.47 <i>d</i>	6.54 <i>d</i>	1.34 <i>d</i>	1.16 <i>d</i>
		7.54 <i>m</i>	7.56 <i>m</i>	7.66 <i>d</i>	7.61 <i>d</i>
		7.40 <i>m</i>	7.42 <i>m</i>	6.41 <i>d</i>	6.35 <i>d</i>
				7.51 <i>m</i>	7.42 <i>m</i>
				7.39 <i>m</i>	7.39 <i>m</i>
					7.30 <i>m</i>

* OMe: 3.84 s

J [Hz]: 5,6 = 8; OC inn: 7,8' = 15; OiBu: 2',3' = 2',4' = 7; compound **1b**: 8,9 = 7; 8,10 = 5; 8,10' = 8; 10,10' = 10.5; compounds **2a** and **2e**: 9,9' = 5; 10,10' = 12; compound **3a**: 10,10' = 12.

Table 2. ^1H NMR spectral data of compounds **6b** and **6d** (400 MHz, CDCl_3 , δ -values)

H	6b	6d
1	5.22 <i>m</i>	4.94 <i>br dd</i>
3	4.51 <i>t</i>	4.35 <i>dd</i>
5	5.22 <i>br d</i>	4.82 <i>m</i>
6	6.37 <i>d</i>	5.18 <i>dd</i>
7	2.96 <i>br s</i>	2.90 <i>m</i>
8	5.22 <i>m</i>	5.84 <i>m</i>
9	2.78 <i>dd</i>	2.85 <i>dd</i>
9'	2.41 <i>dd</i>	2.35 <i>m</i>
13	6.34 <i>d</i>	6.27 <i>d</i>
13'	5.76 <i>d</i>	5.60 <i>d</i>
14	1.74 <i>br s</i>	1.49 <i>br s</i>
15		1.85 <i>d</i>
18	7.06 <i>br t</i>	7.10 <i>t</i>
19	4.46 <i>d</i>	{ 4.54 <i>dd</i> 4.47 <i>dd</i>
20	{ 4.97 <i>d</i> 4.90 <i>d</i>	
23	7.12 <i>q</i>	7.07 <i>q</i>
24	1.93 <i>d</i>	1.95 <i>d</i>
25	4.83 <i>br s</i>	4.81 <i>br s</i>
OAc	2.03 <i>s</i>	2.03 <i>s</i>

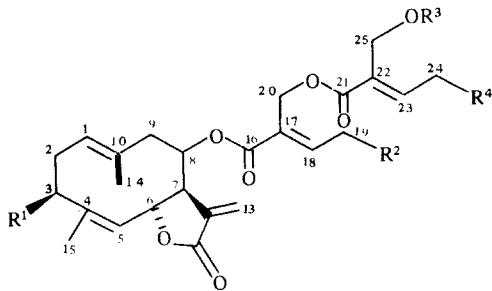
J [Hz]: Compound **6b**: 2,3 = 2,3 = 3.5; 5,6 = 10.5; 7,13 = 2.5; 7,13' = 2; 8,9 = 3.5; 8,9' = 3; 9,9' = 14.5; compound **6d** 1,2 = 13; 1,2' = 4; 2,3 = 6; 2',3 = 10; 5,6 = 9.5; 6,7 = 8.5; 7,13 = 3.5; 7,13' = 3; 8,9 = 4; 9,9' = 13; OCOR: 18,19 = 6; 20,20' = 12; 23,24 = 7; (compound **6d**: 19,19' = 15).

Table 3. ^1H NMR spectral data of compounds **9** and **9a** (400 MHz, δ -values)

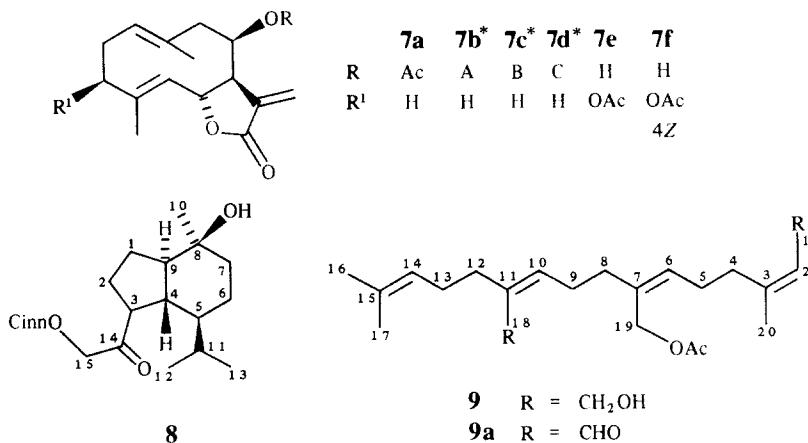
H	9 (CDCl_3)	9 (C_6D_6)	9a (C_6D_6)
1	4.09	5.13 <i>br d</i>	9.90 <i>d</i>
2	5.44	5.51 <i>br t</i>	5.84 <i>br d</i>
4	2.10	1.97 <i>br t</i>	2.17 <i>br t</i>
5	2.19	2.08 <i>br q</i>	2.00 <i>br q</i>
6	5.40	5.38 <i>br t</i>	5.05 <i>br t</i>
8	2.10	1.97 <i>m</i>	2.00 <i>m</i>
9			2.33 <i>br q</i>
10	5.28	5.34 <i>br t</i>	6.03 <i>br t</i>
12	2.10	1.97 <i>m</i>	2.24 <i>m</i>
13	2.04	1.84 <i>br t</i>	2.35 <i>br q</i>
14	5.10	5.32 <i>br t</i>	5.24 <i>br t</i>
16	1.67	1.54 <i>br s</i>	1.71 <i>br s</i>
17	1.59	1.44 <i>br s</i>	1.61 <i>br s</i>
18	4.11	4.18 <i>br s</i>	10.11 <i>s</i>
19	4.59	4.68 <i>br s</i>	4.45 <i>br s</i>
20	1.73	1.47 <i>br s</i>	1.45 <i>d</i>
OAc	2.06	1.58 <i>s</i>	1.73 <i>s</i>

J [Hz]: 1,2 = 4,5 = 5,6 = 9,10 = 12,13 = 13, 14~7; (compound **9a**: 1,2 = 7,8; 2,20 = 1).

the chemical shifts of H-1 and H-18 in the spectrum of the dialdehyde.


Previously some flavone glycosides [16] and the guaianolide ligustrin, an isomer of 8β -hydroxykauniolide [17] were reported from this species.

The chemistry of these two *Ageratina* species shows relationships to that of *A. tristis* (subgenus Neogreenella) by the co-occurrence of very similar germacranolides and of epoxy thymol derivatives. However, benzyl benzoates were not reported from the latter species which also contains some guaianolides. Therefore the placement of *A. anisochroma* in a separate small subgenus next to Neogreenella and *A. ligustrina* in the latter is supported by the chemistry. So far sesquiterpene lactones with 8β -acyloxy groups have been reported from *A. petiolaris* [2], *A. deltoideum* [3], *A. rhomboideum* [4] and *A. tristis* [6], all members of the subgenus Neogreenella. The latter also contain a diterpene closely related to **9**. Thymol derivatives like **2a**–**2f** are common in the whole genus and from some species also benzyl benzoates were reported. However, the large amounts of **5a** and **5b** in *A. anisochroma* as well as of the epoxides **2a** and **2e** are very unusual.


EXPERIMENTAL

2, an olefinic methyl singlet was sharpened (δ 1.73) and saturation of the olefinic signal at δ 5.10 sharpened two olefinic methyl signals. Thus oxygen functions were present at C-1, C-18 and C-19. Spin decoupling with **9** and the dialdehyde **9a** (obtained by oxidation of **9** with PCC) indicated that 19-acetoxy-18-hydroxygeranyl nerol was present. This was supported by the observed NOE's of **9a** which allowed the assignment of H-4 and H-12. Starting with these protons the sequences H-4 to H-10 and H-19 as well as H-12–H-17 could be determined. NOE's between H-20 and H-2, between H-19 and H-5 as well as between H-18 and H-9 established the configuration of the corresponding double bonds. This was supported by

The aerial parts of *A. anisochroma* (700 g) were collected in June 1986 near Cervantes, Costa Rica (voucher 116219CR, deposited in the Herbarium of the University of Costa Rica) and extracted with Et_2O –MeOH–petrol (1:1:1) at room temp. After defatting the extract was separated by CC (silica gel) into six fractions [1: petrol and Et_2O –petrol (1:2); 2: Et_2O –petrol (1:1); 3: Et_2O –petrol (7:3); 4: Et_2O ; 5: Et_2O –MeOH (4:1); 6: Et_2O –MeOH (1:1)]. These fractions were further separated as reported previously [17] by TLC and/or by HPLC (RP 8, MeOH– H_2O , *ca* 100 bar) affording the following compounds (final purification step for each new compound is given in parenthesis): caryophyllene, germacrene D, δ -cadinene and squalene (*ca* 20 mg each), 1.28 g taraxasteryl acetate, 100 mg

	6a	6b	6c	6d
R^1	OAc	OH	H	OH
R^2	H	OH	OH	OH
R^3	H	Ac	H	Ac
R^4	OH	H	H	H
			4E	4E

* A = $\text{COC}(\text{Me})=\text{CHCH}_2\text{OH}(E)$; B = sarracinoyl; C = $\text{COC}(\text{CH}_2\text{OTigl})=\text{CHCH}_2\text{OH}(E)$

cinnamic acid, 4 mg **1a**, 0.6 mg **1b** (HP 1, R_t 15.7 min), 0.6 mg **1c** (HP 1, R_t 14.7 min), 920 mg **2a** (TLC, Et_2O -petrol, 11:9, R_t 0.44), 5 mg **2b**, 12 mg **2c**, 250 mg **2d**, 4 g **2e** (HP 2, R_t 7.3 min), 82 mg **2f**, 18 mg **3a** (HP 2, R_t 8.0 min), 850 mg **3b**, 100 mg **4** (HP 3, R_t 9.8 min), 1.6 mg **5a**, 690 mg **5b**, 8 mg **5c**, 22 mg **6a**, 20 mg **6b** (HP 4, R_t 9.7 min), 5 mg **6c** and 1 mg **6d** (HP 4, R_t 6.7 min). HP 1: $\text{MeOH-H}_2\text{O}$ (4:1); HP 2: $\text{MeOH-H}_2\text{O}$ (17:3); HP 3: $\text{MeOH-H}_2\text{O}$ (9:11); HP 4: $\text{MeOH-H}_2\text{O}$ (13:7).

The extract of the aerial parts of *A. ligustrina* (1 kg, collected in May 1987 in Costa Rica, voucher RMK 9694, deposited in the US National Herbarium, Washington) was worked-up as above. The CC fractions were combined into three [Et_2O -petrol (1:9); Et_2O -petrol (1:1) and Et_2O -MeOH (4:1)]. Fraction 1 gave by TLC (Et_2O -petrol, 1:19) 17 mg caryophyllene and 14 mg caryophylleneoxide. TLC of fraction 2 ($\text{C}_6\text{H}_6-\text{CH}_2\text{Cl}_2-\text{Et}_2\text{O}$, 9:9:2) yielded 30 mg spathulenol, 30 mg lupeol and 7.5 mg **5b**. TLC of fraction 3 ($\text{C}_6\text{H}_6-\text{CH}_2\text{Cl}_2-\text{Et}_2\text{O}$, 2:2:1) gave 7.5 mg cirsimarin and five further bands (3/2-3/6) which were sepd by repeated TLC. Finally 25 mg 8 β -hydroxykaunolide, 5 mg **7a**, 3 mg **7b**, 2 mg **7c**, 46 mg **7d**, 20 mg **7e**, 20 mg **7f**, 300 mg sarraciniic acid, 10 mg pinoresinol, 4 mg **8** (TLC, Et_2O -petrol, 7:3), 3 mg liliolide and 180 mg **9** (TLC, $\text{C}_6\text{H}_6-\text{CH}_2\text{Cl}_2-\text{Et}_2\text{O}$ -MeOH, 20:20:10:1)

were obtained. Known compounds were identified by comparing the 400 MHz ^1H NMR spectra with those of authentic material.

10-Cinnamoyloxythymol (1b). Colourless oil; IR $\nu_{\text{max}}^{\text{CCl}_4}$ cm^{-1} : 3530 (OH), 1715 (C=CCO₂R); MS m/z (rel. int.): 296.141 [M]⁺ (5) (calc. for $\text{C}_{19}\text{H}_{20}\text{O}_3$: 296.142), 148 [M-RCO₂H]⁺ (92), 131 [RCO]⁺ (100), 103 [131-CO]⁺ (28).

10-Cinnamoyloxy-8,9-dehydrothymol (1c). Colourless oil; IR $\nu_{\text{max}}^{\text{CCl}_4}$ cm^{-1} : 3530 (OH), 1715 (C=CCO₂R); MS m/z (rel. int.): 294.125 [M]⁺ (11) (calc. for $\text{C}_{19}\text{H}_{18}\text{O}_3$: 294.126), 146 [M-RCO₂H]⁺ (73), 131 [RCO]⁺ (100), 103 [131-CO]⁺ (23).

10-Cinnamoyloxy-8,9-epoxythymol isobutyrate (2a). Colourless oil; IR $\nu_{\text{max}}^{\text{CCl}_4}$ cm^{-1} : 1760 (PhOCOR), 1715 (C=CCO₂R); MS m/z (rel. int.): 380.162 [M]⁺ (1) (calc. for $\text{C}_{23}\text{H}_{24}\text{O}_5$: 380.162), 232 [M-RCO₂H]⁺ (8), 145 [232-OCOR]⁺ (26), 131 [RCO]⁺ (100), 105 [131-CO]⁺ (38), 71 [RCO]⁺ (32).

10-Cinnamoyloxy-6-methoxy-8,9-epoxythymol isobutyrate (2e). Colourless oil; IR $\nu_{\text{max}}^{\text{CCl}_4}$ cm^{-1} : 1750 (PhOCOR), 1710 (C=CCO₂R); MS m/z (rel. int.): 410.172 [M]⁺ (7) (calc. for $\text{C}_{24}\text{H}_{26}\text{O}_6$: 410.173), 340 [M-O=C=CMe₂]⁺ (3), 262 [M-RCO₂H]⁺ (3), 192 [262-O=C=CMe₂]⁺ (26), 131 [RCO]⁺ (100), 103 [131-CO]⁺ (18), 71 [RCO]⁺ (17).

10-Cinnamoyloxy-8-hydroxy-9-isobutyryloxythymol (3a).

Colourless oil; IR $\nu_{\text{max}}^{\text{CCl}_4}$ cm^{-1} : 3600 (OH), 1735 (CO_2R), 1715 ($\text{C}=\text{CCO}_2\text{R}$); MS m/z (rel. int.): 398.173 [$\text{M}]^+$ (1) (calc. for $\text{C}_{23}\text{H}_{26}\text{O}_6$: 398.173), 251 [$\text{M}-\text{OCinn}]^+$ (6), 131 [$\text{RCO}]^+$ (72), 105 [$131-\text{CO}]^+$ (56), 71 [$\text{RCO}]^+$ (100).

6 β -Hydroxypiperitol-3-O- β ,D-glucopyranoside (4). Colourless oil; ^1H NMR (MeOD): δ 5.66 (br s, H-2), 4.11 (br d, H-3), 1.75 (m, H-5 $_1$), 1.45 (dt, H-5 $_2$), 3.92 (br t, H-6), 1.88 (br s, H-7), 2.18 (m, H-8), 1.93 (d, H-9), 1.83 (d, H-10), 4.40 (d, H-1'), 3.30 (m, H-2'-H-5'), 3.84 and 3.67 (dd, H-6') (J [Hz]: 2.3 = 9; 5 $_1$, 5 $_2$ = 14; 5.6 = 3; 8.9 = 8, 10 = 7; 1', 2' = 8; 5', 6 $_1$ = 2.5; 5', 6 $_2$ = 5.5; 6 $_1$, 6 $_2$ = 12); $[\alpha]_D^{24}$ -49 (MeOH; c 0.29).

Acetylation (Ac_2O , DMAP, CHCl_3) afforded the pentaacetate of **4**, colourless gum; IR $\nu_{\text{max}}^{\text{CCl}_4}$ cm^{-1} : 1750 (OAc); MS m/z (rel. int.): 331 (14), 169 (80), 135 (68), 109 (70), 93 (100); CIMS m/z (rel. int.): 483 (0.3) [$\text{M} + 1 - \text{HOAc}]^+$ 195 (100), 135 [$\text{C}_{10}\text{H}_{15}]^+$ (16); ^1H NMR (CDCl_3): 5.62 (br s, H-2), 4.03 (br d, H-3), 1.65 (m, H-4), 1.78 (ddd, H-5 $_1$), 1.46 (ddd, H-5 $_2$), 5.16 (br t, H-6), 1.69 (br s, H-7), 2.04 (m, H-8), 1.38 (d, H-9), 1.27 (d, H-10), 4.62 (d, H-1'), 4.96 (dd, H-2'), 5.06 (t, H-3'), 5.22 (t, H-4'), 3.68 (ddd, H-5'), 4.19 (dd, H-6'), 4.13 (dd, H-6 $_2$); OAc: 2.08, 2.06, 2.05, 2.03, 2.02 s (J [Hz]: 4 and 2', 3' = 3', 4' = 4', 5' = 9; 5', 6 $_1$ = 5.5; 5', 6 $_2$ = 3; 6 $_1$, 6 $_2$ = 12).

Benzyl-2-methoxybenzoate (5c). Colourless oil; IR $\nu_{\text{max}}^{\text{CCl}_4}$ cm^{-1} : 1740 (CO_2R); MS m/z (rel. int.): 242.094 [$\text{M}]^+$ (56) (calc. for $\text{C}_{15}\text{H}_{14}\text{O}_3$: 242.094), 151 [RCO_2B] $^+$ (10), 135 [$\text{RCO}]^+$ (88), 91 [$\text{C}_7\text{H}_7]^+$ (100); ^1H NMR (CDCl_3): 6.98 (d, H-3), 7.48 (ddd, H-4), 6.98 (dd, H-5), 7.84 (dd, H-6), 7.47 (m, H-2', H-6'), 7.37 (m, H-3', H-4', H-5'), 5.35 (s, H-7'), 3.91 (s, OMe) (J [Hz]: 3.4 = 4.5 = 5.6 = 8; 4.6 = 1.5) (assignment proven in part by the NOE's).

Desacetyl-24-desoxyprovincialin-25-O-acetate (6b). Colourless gum; IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm^{-1} : 3520 (OH), 1760 (γ -lactone), 1720 ($\text{C}=\text{CCO}_2\text{R}$); MS m/z (rel. int.): 518 [$\text{M}]^+$ (1.5), 458.194 [$\text{M}-\text{HOAc}]^+$ (8) (calc. for $\text{C}_{25}\text{H}_{30}\text{O}_8$: 458.194), 246 [$\text{M}-\text{RCO}_2\text{H}]^+$ (30), 228 [$246-\text{H}_2\text{O}]^+$ (30), 141 [$\text{RCO}]^+$ (73), 99 [$141-\text{ketene}]^+$ (41), 81 [$99-\text{H}_2\text{O}]^+$ (100).

3 β -Hydroxy-8 β -[5-O-acetyl]sarracinoxyloxy-4-hydroxytigloyloxy-costunolide (6d). Colourless gum; CIMS m/z (rel. int.): 159 [$\text{RCO}_2\text{H} + 1]^+$ (100), 141 [$159-\text{H}_2\text{O}]^+$ (36), 99 [$141-\text{ketene}]^+$ (8).

15-Cinnamoyloxyoplopanone (8). Colourless oil; IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm^{-1} : 3590 (OH), 1720 ($\text{C}=\text{O}$, $\text{C}=\text{CC}=\text{R}$); MS m/z (rel. int.): 384.230 [$\text{M}]^+$ (0.5) (calc. for $\text{C}_{24}\text{H}_{32}\text{O}_4$: 384.230), 236 [$\text{M}-\text{RCO}_2\text{H}]^+$ (21), 223 [$\text{M}-\text{CH}_2\text{OCinn}]^+$ (46), 205 [$223-\text{H}_2\text{O}]^+$ (6), 177 [$205-\text{CO}]^+$ (54), 131 [$\text{RCO}]^+$ (100); ^1H NMR (CDCl_3): δ 2.71 (ddd, H-3, J = 11.5, 9, 5.5 Hz), 1.73 (dt, H-3, J = 5.5, 11.5), 1.97 (m, H-5), 1.20 (s, H-10), 1.47 (m, H-11), 0.92

and 0.69 (d, H-12, 13), 4.91 and 4.81 (d, H-15, J = 17).

19-Acetoxy-18-hydroxygeranyl nerol (9). Colourless oil; IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm^{-1} : 3570 (OH), 1725 (OAc); MS m/z (rel. int.): 346 [$\text{M}-\text{H}_2\text{O}]^+$ (2), 286 [$346-\text{HOAc}]^+$ (4), 268 [$286-\text{H}_2\text{O}]^+$ (3.5), 69 [$\text{Me}_2\text{C}=\text{CHCH}_2]^+$ (100). 20 mg **9** in 3 ml CH_2Cl_2 were stirred for 6 hr with 40 mg PCC. TLC (Et_2O -petrol, 4:1) gave 5 mg **9a**; MS m/z (rel. int.): 300 [$\text{M}-\text{HOAc}]^+$ (1.5), 271 [$300-\text{CHO}]^+$ (2.5), 69 [$\text{Me}_2\text{C}=\text{CHCH}_2]^+$ (100).

REFERENCES

1. King, R. M. and Robinson, H. (1987) *The Genera of the Eupatorieae, Monographs in Systematic Botany*, Missouri Botanical Garden, Vol. 22, 428.
2. Bohlmann, F., Jakupovic, J. and Lonitz, M. (1977) *Chem. Ber.* **110**, 301.
3. Quijano, L., Calderon, J. S., Gomez, F., Garduno, J. T. and Rios, T. (1980) *Phytochemistry* **19**, 1975.
4. Guerrero, C., Diaz, E., Martinez, M., Taboada, J., Plata, S. M., Diddi, M. G. and Tellez, J. (1977) *Rev. Latinoam. Quim.* **8**, 123.
5. Romo, J., Rios, T. and Quijano, L. (1968) *Tetrahedron* **24**, 6087.
6. Bohlmann, F., Banerjee, S., Wolfrum, C., Jakupovic, J., King, R. M. and Robinson, H. (1985) *Phytochemistry* **24**, 1319.
7. Rinn, M. (1970) *Planta Med.* 147.
8. Bohlmann, F. and Abraham, W. R. (1979) *Phytochemistry* **18**, 868.
9. Bohlmann, F. and Zdero, C. (1978) *Phytochemistry* **17**, 1135.
10. Bohlmann, F., Zdero, C. and Kapteyn, H. (1969) *Chem. Ber.* **102**, 1682.
11. Bohlmann, F., Zdero, C. and Turner, B. L. (1985) *Phytochemistry* **24**, 1263.
12. Bohlmann, F., Zdero, C., King, R. M. and Robinson, H. (1982) *Phytochemistry* **21**, 2021.
13. Dolejs, L. and Herout, V. (1962) *Coll. Czech. Chem. Commun.* **27**, 2654.
14. Bohlmann, F., Jakupovic, J. and Schuster, A. (1983) *Phytochemistry* **22**, 1637.
15. Takahashi, T., Eto, H., Ichimura, T. and Murae, T. (1978) *Chem. Letters* 1345.
16. Quijano, L., Malanco, F. and Rios, T. (1970) *Tetrahedron* **26**, 2851.
17. Bohlmann, F., Zdero, C., King, R. M. and Robinson, H. (1984) *Phytochemistry* **23**, 1979.